
Стабильность инулина и олигофруктозы BENEOTM в условиях кислой среды и высокой температуры

1. Описание

В условиях кислой среды при высокой температуре инулин и олигофруктоза могут подвергаться гидролизу с образованием более коротких цепей и фруктозы (см. рис.1), что будет приводить к частичной или полной потере их диетических свойств, и, в некоторых случаях, к повышению сладости готового продукта. Степень гидролиза будет зависеть от рН, содержания сухого вещества, температуры и длительности воздействия неблагоприятных условий. Обычно её можно рассчитать или предсказать на основании накопленных экспериментальных данных. И только в некоторых отдельных случаях гидролиз может ограничить использование инулина и олигофруктозы — например, в кислых продуктах с большим сроком хранения и с заявленным свойством «не содержит сахара». В большинстве случаев небольшой передозировки инулина и олигофруктозы может быть достаточно для получения требуемого результата, то есть необходимого содержания активного компонента для проявления заявленного на упаковке свойства в конце срока годности продукта.

Puc 1:Гидролиз инулина: образование более коротких фруктановых цепей (GF_n, F_n) , фруктозы и небольшого количества глюкозы. Более короткие цепи фруктанов имеют такие же диетические свойства, как и более длинные.

Степень гидролиза определяется как:

% гидролиза = $\frac{\text{содержание}}{\text{содержание}}$ инулина или олигофруктозы (T_0) - их содержание (T_1)

Таким образом, уровень гидролиза выражается в процентах от разницы между исходным содержанием инулина и олигофруктозы T_0 и их конечным содержанием T.

2. Следствия

2.1. Возрастание сладости

Эффект увеличения сладости зависит от исходного содержания инулина и олигофруктозы в готовом продукте и степени их гидролиза. В большинстве случаев при введении достаточно небольших количеств данных ингредиентов, например, 2%, и в случае если гидролиз не превышает 10-20%, наблюдается возрастание сладости, эквивалентное образованию 0.2-0.4% фруктозы, что не оказывает существенного влияния на вкусовые качества продукта.

2.2. Частичная потеря диетических свойств инулина и олигофруктозы

При гидролизе инулин и олигофруктоза могут распадаться до фруктозы, что приведёт к частичной потере их диетических свойств. В большинстве случаев это может быть исправлено путём добавления дополнительного количества инулина и олигофруктозы для компенсации их потери вследствие гидролиза. Например:

Кисломолочный напиток, рН 4.0, срок хранения 6 месяцев, 1 г пищевого волокна на 100 г продукта.

- источник волокна: BeneoTM ST
- ожидаемый гидролиз: 15% в течение 6 месяцев
- расчёт: необходимое содержание T₁ по окончании срока годности: 1 г волокна/100 г напитка необходимая добавка к исходному количеству: 1,18% инулина = 1,32% BeneoTMST*
 - *Вепео^{ТМ}ST содержит 97% сухого вещества и 92% инулина в пересчёте на сухое вещество.

3. Стабильность инулина и олигофруктозы BeneoTM в процессе приготовления готового продукта

3.1. Стабильность олигофруктозы Вепео^{ТМ}

В таблице ниже показана степень гидролиза олигофруктозы после различных тепловых обработок. Она зависит от рH, количества сухого вещества в готовом продукте (водной активности), температуры и длительности обработки. При прочих равных условиях олигофруктоза $Beneo^{TM}$ более чувствительна к гидролизу, чем инулин $Beneo^{TM}$, вследствие её более низкой степени полимеризации.

Примечание: все степени гидролиза представлены в виде % от исходного содержания инулина или олигофруктозы в образце (см. параграф 1).

3.1.1. Пастеризация

% Гидролиза олигофруктозы Вепеотм L95 (дозировка: 20% сухого вещества)

Температура / время обработки	pH = 6.0	pH = 4.0	pH = 3.5
85°C 2'	0%	< 1%	5%
85°C 5'	0%	< 1%	6%
90°C 5'	0%	< 1%	10%
95°C 2'	0%	1%	10%
95°C 5'	0%	1%	16%

В таблице чётко показано влияние pH и температуры на степень гидролиза олигофруктозы Beneo TM . При значении pH равном или выше 4.0 гидролиз является незначительным при всех температурах. При более низком уровне pH температура

Стр. 2 Стабильность Beneo™ в кислой среде

становится важным параметром. Так, при pH=3.5 и $95^{\circ}C$ в течение 5' происходит уже 16% гидролиз.

% Гидролиза олигофруктозы ВепеотмР95 (дозировка: 40% сухого вещества

Температура / время обработки	pH = 6.0	pH = 4.0	pH = 3.5	
85°C 2'	0%	< 1%	4%	
85°C 5'	0%	< 2%	5%	
90°C 5'	0%		9%	
95°C 2'	0%	< 1%	10%	
95°C 5'	0%		15%	

При содержании сухого вещества, равном 40%, стабильность олигофруктозы Вепео^{тм} несколько улучшается, но этот эффект является незначительным. Влияние рН и температуры на степень гидролиза аналогично полученному при 20% содержании ингредиента.

3.1.2. UHТ процесс

% Гидролиза олигофруктозы Вепео^{ТМ} Р95 (дозировка: 20% сухого вещества)

Температура / время обработки			PH = 6.0	pH = 3.5
140°C	10"	прямой контакт*	1%	22%
140°C	10"	непрямой контакт**	0%	5%
120°C	5"	непрямой контакт**	1%	
120°C	120"	непрямой контакт**	4%	

^{*} прямая подача пара: прямой контакт между паром и продуктом

Как видно из таблицы, UHT обработка продуктов, имеющих среду, близкую к нейтральной, не вызывает гидролиза. Это означает, что олигофруктоза Beneo^{тм} P95 может использоваться в продуктах, проходящих UHT обработку, например, молоке и молочных десертах, без какого-либо риска потери её технологических и диетических свойств. При производстве кислых продуктов UHT процесс будет являться определяющим фактором степени гидролиза. В системах без непосредственного контакта между горячим паром и продуктом наблюдается лишь небольшой гидролиз, в то время как в системах с непосредственным контактом может наблюдаться серьёзная потеря Веneo^{тм} P95 за счёт гидролиза.

3.1.3. Стерилизация

Были проведены пятиступенчатые тесты в традиционной стерилизационной колонне:

Стадия 1: 15 минут при 64°C Стадия 2: 15 минут при 85°C

afi@orafti.com • www.orafti.com

^{**} система опосредованной обработки: прямой контакт между паром и продуктом отсутствует

Стадия 3: 11 минут при 114-118°C

Стадия 4: 15 минут при 85°C Стадия 5: 15 минут при 40°C

Данная температурная обработка является достаточно жёсткой, и она может вызывать больший гидролиз при низких значениях pH, по сравнению с другими обработками. При содержании сухого вещества 15% и значении pH около 5.7 гидролиз не происходит.

При значении pH около 3.5 происходит значительный гидролиз олигофруктозы (BeneoTMP95 или BeneoTMLP95) — до 50%. При более высоком общем содержании сухого вещества, например, 60%, наблюдается уменьшение степени гидролиза до 24%.

3.2. Стабильность инулина Вепеотм

В таблице ниже показана степень гидролиза инулина после различных температурных обработок. В условиях кислой среды при высокой температуре инулин может гидролизоваться до более коротких цепочек с образованием фруктозы и возрастанием сладости готового продукта. Можно заметить чёткое различие между инулином и олигофруктозой: инулин менее чувствителен к гидролизу вследствие наличия у него более длинных цепей. Следовательно, длинноцепочечный инулин Beneo^{ТМ} HP / HPX / HP-Gel будет менее чувствительным к гидролизу по сравнению со стандартным инулином (BeneoTM ST, GR, ST-Gel).

B общем случае степень гидролиза Beneo $^{\mathrm{TM}}$ ST будет в два раза выше степени гидролиза Beneo $^{\mathrm{TM}}HP$

3.2.1. Пастеризация

% Гидролиза инулина BeneoTM ST-Gel (дозировка: 10% сухого вещества)

Температура / время обработки	pH = 6.5	pH = 4.0	pH = 3.5	pH = 3.0
70°C 5'	0%	< 1%		1%
15'	0%	< 1%		5%
30'	0%	< 1%		7%
60'	0%	2%		13%
90°C 5'	0%		3%	

В таблице чётко продемонстрирован эффект рН и температуры на степень гидролиза. Если рН выше или равно 4.0, общий гидролиз при всех температурах ограничен. При более низком уровне рН, например, 3.0, температура становится важным параметром. Так, при 70°C в течение 60' происходит уже 13% гидролиз.

afi@orafti.com • www.orafti.com

3.2.2. UHT процесс

% Гидролиза инулина BeneoTM ST-Gel (дозировка: 15% сухого вещества)

		Температура / время	pH = 5.0
145°C	10"	прямой контакт*	0%
140°C	10"	непрямой контакт**	0%

3.2.3. Стерилизация

При значениях pH, соответствующих нейтральной среде, гидролиз отсутствует. В условиях кислой среды, например, при pH 3.5 и содержании сухого вещества 15% степень гидролиза составляет 13%. При более высоком содержании сухого вещества, например, 60%, гидролиз не происходит.

4. Стабильность инулина и олигофруктозы BeneoTM при хранении готовых продуктов

4.1. Стабильность олигофруктозы Вепеотм при хранении готовых продуктов

Приведённый ниже рисунок 2 показывает, что степень гидролиза может быть достаточно высокой. Для продукта с pH 4.0 и сроком хранения 6 месяцев должна производиться 20% передозировка олигофруктозы BeneoTM P95 для компенсации кислотного гидролиза.

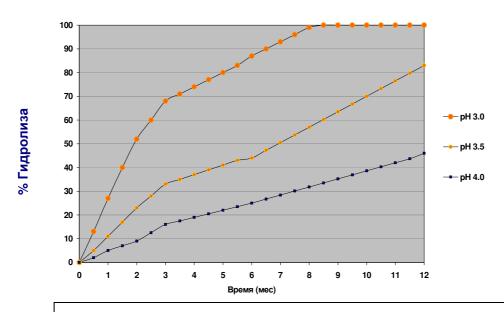


Рис. 2: Гидролиз олигофруктозы Вепео TM Р95 в процессе хранения при температуре 20° С и различных значениях рН. Испытуемым продуктом был кислый напиток с содержанием сухого вещества 14° brix

4.2. Стабильность инулина BeneoTM при хранении готовых продуктов

Вследствие более низкой чувствительности к гидролизу по сравнению с олигофруктозой, инулин является более подходящим диетическим ингредиентом для кислых напитков. При этом могут использоваться как BeneoTM HP так и BeneoTM ST. На рис. 3 показано изменение степени гидролиза во времени для BeneoTM ST.

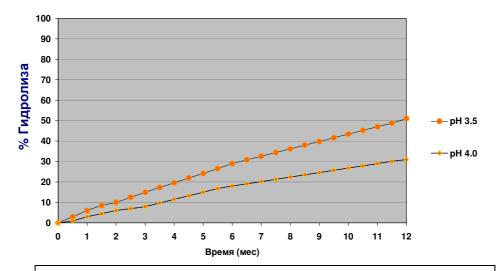


Рис. 3 : Гидрилиз Вепео $^{\text{TM}}$ ST при хранении в течение 12 месяцев при комнатной температуре и разных значениях рН.

Рисунок показывает, что инулин является более подходящим ингредиентом в качестве, например, волокна, для кислых напитков с длительным сроком хранения. Так, при рН 4.0 гидролиз после 6 месяцев хранения не превышает 15%, что может быть легко компенсировано 15% передозировкой инулина. Это позволяет гарантировать заявленное содержание диетического волокна в течение всего срока годности. Продукты гидролиза не вызывают изменений вкуса по причине достаточно низкой концентрации инулина, рекомендованной для этого применения (не более 2%).

Другой возможностью является использование инулинов BeneoTM HP и BeneoTM HP-Gel, которые менее чувствительны к гидролизу, чем BeneoTM ST. Однако, их растворимость при комнатной температуре не превышает 1%. Однако, в большинстве случаев 1% волокна бывает достаточно, и BeneoTM HP вполне подходит для данного класса рецептур. На рис. 4 показан расчёт степени гидролиза BeneoTM HP.

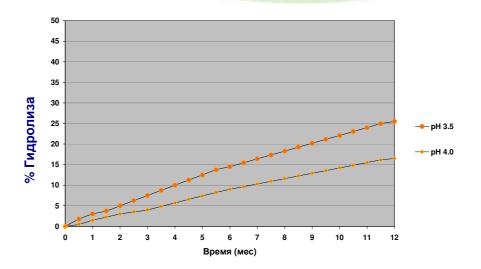


Рис. 4: Гидролиз инулина Вепео $^{\text{ТМ}}$ HP при хранении в течение 12 месяцев при комнатной температуре и разных значениях рH.

Рис. 4 показывает, что Вепео^{ТМ} HP является наиболее подходящим типом инулина Вепео^{ТМ} при низких дозировках в качестве, например, волокна для кислых напитков с большим сроком годности. Даже при pH = 3,5 степень гидролиза после 6 месяцев составляет менее 15%, что может быть легко скомпенсировано 15% передозировкой инулина.

5. Выводы

С технологической точки зрения инулин и олигофруктоза Вепео^{ТМ} могут использоваться как ингредиенты здорового питания в большинстве рецептур пищевых продуктов, включая продукты с кислой средой. Только в случае особо жёстких условий их использование может быть ограничено. В большинстве других случаев небольшая передозировка инулина и олигофруктозы Вепео^{ТМ} позволяет решить проблему потери диетических свойств за счёт гидролиза.

6. Диетические свойства инулина и олигофруктозы Beneo $^{\mathrm{TM}}$

См. нашу брошюру «Диетические свойства инулина и олигофруктозы из цикория».

7. Примечания

Для определения инулина и олигофруктозы не может быть использован стандартный метод AOAC-Total Dietary Fibre или метод Englyst. Должен быть использован специальный метод AOAC, так называемый «Фруктановый метод» (Fructan Method), официально опубликованный под номером 997.08.

Информация, изложенная в данной брошюре, соответствует текущему состоянию нашего знания о предмете и предоставляется без каких-либо обязательств. Она не содержит каких-либо гарантий того, что поставка или использование продуктов на какой-либо территории не будет являться нарушением прав третьей стороны на коммерческую или интеллектуальную собственность. Данная информация также не может рассматриваться как руководство для использования наших продуктов в нарушение существующих патентов или местного законодательства в области пищевой промышленности.

Полное или частичное воспроизведение данной брошюры разрешается только с разрешения редактора.

Ответственный редактор: Paul Coussement

Стр. 8

Стабильность Beneo™ в кислой среде

